APEX Workflows
LANL, NERSC, SNL

SAND2015-10342 O
LA-UR-15-29113

November 24, 2015

1 Introduction

The Department of Energy (DOE) compute facilities operate as resources for the National
Nuclear Security Administration (NNSA) and Office of Science. In this document we de-
scribe a subset of scientific workflows which are run on current platforms. There is significant
commonality to how Los Alamos National Laboratory (LANL), Sandia National Laboratory
(SNL), Lawrence Livermore National Laboratory (LLNL) and the National Energy Research
Scientific Computing Center (NERSC) operate and conduct scientific inquiry with super-
computers. In addition to presenting the commonality between the sites, we believe that
opportunities exist to significantly optimize the operation of our facilities and more rapidly
advance our scientific goals. In describing how our scientific workflows move from inception
to realization we believe that we can also enable significant improvements in how computer
architectures support real scientific workflows.

1.1 Computational Campaign Overview

In order to use the computing resources at a compute facility, teams composed of domain ex-
perts and computer scientists develop and submit proposals describing the team’s scientific
goals and the details of how that site’s supercomputers will be used (including the com-
putational time and storage needed to accomplish the proposed scientific goals). All sites,
except NERSC, select a number of proposals to execute on the site machine during a given
computing campaign based on the quality of the submitted proposal and the suitability of
the described scientific goals. The selected teams are granted computing allocations ranging
from a few days of full system time to almost a full month of computational time based
on the amount of time the team has requested and the amount of time granted to other
approved teams during that campaign. Note there is not an expectation that all proposals
will scale to the degree required to leverage the entire machine. Nor is there an expectation
by the proposal teams that the machine will execute the team’s jobs by some deadline other
than within the campaign. Nevertheless, some proportion of the submitted jobs will leverage

the full machine, and some teams will advise the operators of deadlines that require allowing
a series of jobs to finish before some non-campaign deadline.

Included below are two workflow diagrams that demonstrate two classes of computational
science workloads: large-scale scientific simulation and large-scale high-throughput comput-
ing. The large rectangle at the top of the figure shows the data sets generated throughout
the workflow and the timescale during which the data is retained. In particular, we have dif-
ferentiated three timescales of interest: temporary, campaign, and forever. Data generated
on temporary timescales includes checkpoints and analysis data sets that are produced by
the application, but that the domain scientist will eventually discard (usually at job com-
pletion, or when a later data processing step completes). The campaign timescale describes
data that is generated and useful throughout the execution of the entire scientific workflow.
Once the campaign is complete the scientist will discard this data. Finally, we consider the
data retention period labeled forever. Forever timescale data will persist longer than the
machine used to generate the data. This typically includes small numbers of checkpoint
data sets; however, this is primarily the analysis data sets generated by the application and
re-processed by the user/scientist.

The lower portion of the diagram shows the phases of the workflow. A workflow phase
is executed as a series of parallel and/or serial jobs submitted to the batch scheduler and
executed when sufficient resources exist to execute the submitted jobs. The scheduler may
maintain several job scheduling queues to ensure that high-value jobs, such as jobs con-
structed to complete the interactive analysis phase of the workflow, execute immediately (or
perhaps during business hours when scientists will be at their terminals). Most phases of
the workflow require executing tens and possibly thousands of jobs, with each job continuing
the progress of prior jobs.

The workflow phases also describe a dependency between the submission of jobs into the
scheduling queues. However, the strict ordering requirements are particular to the specific
workflow phases. In some cases, a phase cannot begin until all of the prior phases are
complete. In other cases, a phase cannot begin until the first set of jobs from the prior
phases are complete; but there is no requirement that the prior phases be complete, only that
some number of jobs are complete. We describe these dependencies in detail in sections (1.2
and [L3]

Finally, we include in the workflow phase an icon for the initiator of the jobs submitted
during the phase. The stick person icon indicates that a human is “in the loop” and perform-
ing job submissions. An instrument icon indicates that an external instrument or automated
process is performing the job submissions. We use this icon to indicate that the computa-
tional resources are coupled in near real-time to an on-going experiment or orchestration
framework. For example, compute jobs are automatically submitted to the scheduling queue
when data is generated by LBNL’s Advanced Light Source (ALS) beamlines.

1.2 Simulation Science Workflow Overview

Large-scale multi-physics simulation of real world phenomena are one of the critical work-
flows for APEX supercomputers. Although the application software packages for simulating
diverse fields, such as relativistic shock waves, combustion, and plasma flows, differ based
on the underlying physics modeled, a great deal of commonality exists across scientific sim-

ulation workflows. In particular, the APEX team has analyzed a large proportion of the
simulation science workflows popular on existing supercomputers and has constructed an
overview of how a scientist leverages multi-physics simulation software, parallel tools, and
analysis software to improve the understanding of the physical world.

Initial Sim .
| t ! Checkpoint Analysis
o Input Data Set
Deck Deck Dump

Foreve

Checkpoint
Dump

Data Retention Time

Simulation 7

N |

PR /7 \J prpog \ v Ve v N N

| 4

Setup/

Parameterize/ Job | Simulate | Job Down- Post .
Create Begin | Physics End'—‘ Sample Process viz
Geometry

. —/

AN \ AN))
% Phase 1 2 Phase 2 % Phase 3 % Phase 4 2 Phase 5

&

Figure 1: An example of an APEX simulation science workflow.

Figure [1] is an APEX workflow diagram that depicts the phases and data processing
common to most simulation science workflows. In the initial phase we see that the scientist
leverages a small input data set, typically curated over multiple campaigns, to construct a
set of initial simulation conditions. For example, the resulting initial condition data sets
are often a mesh representing a physical region of interest, where the physical regions of
interest may range from the surface of the earth and atmosphere for climate modeling or
massive regions of space to model galaxy collisions. Although phase 1 is only depicted once
in the diagram, it may occur multiple times during a proposal team’s campaign — though
rarely more than 3 - 5 times per project. Further, the construction of the mesh is a parallel
process and may use a moderate number of processors or it may use the entire machine. The
typical constraint for initial conditions creation is acquiring the amount of memory to store
the initial state and write it to file. Not surprisingly then, the generated input data set is
usually a large portion of the memory of the processors allocated to phase 1, often 80% of
the memory available to phase 1 jobs is written to storage.

Phase 2 is generally the most computationally intensive portion of the simulation sci-
ence workflow. Given the initial state/mesh and an extremely small text-based input deck
of settings and configurations, the physics calculations begin. The number of processors
allocated to the job depend on the physics application’s computational and memory require-
ments, and are typically static throughout the simulation. However, it is not uncommon
for a project to use a coarse 2-dimensional mesh to create pilot data before running a much
larger 3-dimensional mesh that spans a much larger portion of the machine. Restart dumps,
or checkpoints, are created with a frequency high enough to ensure that when a job fails or
finishes, a subsequent job can continue where the previous job progress ended. The ideal
checkpoint interval, v multiplied by the job mean time to interrupt (JMTTI) in the above
diagram, has been estimated carefully by Daly [I], and most simulations create checkpoints
with at least this frequency. Although a full system job might run for 24 hours and generate
a checkpoint hourly, checkpoints are generally overwritten using an odd/even scheme. Thus
when a phase 2 job successfully terminates 3 checkpoints should exist: an odd checkpoint,
an even checkpoint, and an end-of-job checkpoint. In general, checkpoints are only used to
start the next simulation job. However, checkpoints can often be analyzed for progress, and
5 - 15 checkpoints may be retained forever so that the portions of the simulation results can
be re-calculated later for verification.

Phase 2 also results in the generation of analysis data sets. These data sets are gener-
ated at evenly spaced intervals in simulated time, but are typically not created uniformly
throughout the life of the project or campaign. That is, the number of calculations required
to construct analysis data sets varies over the duration of the simulation.

Phase 3 shows the common task of down-sampling the analysis data. By their very
nature, all analysis data sets are critical to the scientists, however, once a data set is down-
sampled, the data at the original resolution is typically too large to be retained (often in the
range of 5 - 20% of the total allocated memory per data set). Down-sampling and analysis
tasks in general are typically I/O intensive rather than compute intensive, and thus use the
small numbers of compute nodes required to achieve the necessary memory footprint and
adequate I/O bandwidth.

Phase 4 shows another common simulation science task, data post processing. Unlike
phase 3, which is performed as the analysis data sets are generated, phase 4 requires all of the
analysis data sets to exist prior to beginning phase 4. In this process the generated analysis
data sets are formatted such that the regions of interest can be examined by visualization
tools. This may involve concatenating portions of the data into separate data sets that favor
visualization in isolation, or concatenating all of the data for visualization together. All
post-processed data is vital to the scientist and will be retained beyond the lifetime of the
campaign.

Phase 5 shows the single most important task within the simulation science workflow,
interactive analysis. It is in this phase that the scientist uses tools such as Ensight, ParaView
and Vislt to visualize and analyze the simulated and processed timestep data. It is only
during this phase that scientific discovery can occur. Due to the importance of this step,
interactive visualization typically occurs as soon as an analysis data set is generated, and
then continues on through the life of the simulation and data processing phases.

1.3 Data Intensive Workflow Overview

This section describes the key features of the Uncertainty Quantification (UQ) and High
Throughput Computing (HTC) workflows run on APEX machines. The commonality be-

tween UQ and HTC workflows is in the infrastructure that is needed to efficiently execute and

collect results from an ensemble of runs. The software infrastructure used at Sandia is a UQ
framework named Dakota (https://dakota.sandia.gov/) and at NERSC are various work-

flow management software (https://www.nersc.gov/users/data-analytics/workflow-tools/).
The features provided by the software include

e Efficient scheduling of an ensemble of independent runs on a supercomputer. The
work per run is often variable and so dynamic load balancing strategies are implemented
to improve overall throughput. Queue wait time can also be significant and so multiple
runs are often bundled together to improve overall throughput.

e Collecting results from each run in the ensemble.
¢ Recovery from failures when some or all of the individual runs die.
e Detailed monitoring of ensemble progress and saving provenance information.

The summarized workflow is shown in Figure [2] It can be applied to UQ and HTC.

forever E ======= B

Data Retention Time

temporary

Yy ¥ v v v v

Generate [gather .| HTC analysis f UQ Analysis
input data simulation

v

{1..N} {1..m}

Figure 2: Example HTC and UQ workflow

A typical UQ workflow involves creating a mesh for the simulation (stage 1), running an
ensemble of independent simulations (stage 2), and performing UQ analysis on the aggregated
results to better understand the system being simulated (stage 3). The ensemble often

5

https://dakota.sandia.gov/
https://www.nersc.gov/users/data-analytics/workflow-tools/

consists of 1-100 simulations which are each run with 20-500 MPI ranks and up to 10s of
threads within each MPI rank.

A typical experimental HTC workflow also fits the same pattern. The Experimental
or Observational Data (EOD) is sent to NERSC (stage 1), an ensemble of data analysis
workflow pipelines are run on separate EOD data sets and the results (as well as location
of raw and processed data) are aggregated into a database (stage 2). The N ensemble tasks
may be executed together or staggered according to when EOD data sets arrive. The final
database is made accessible through the web and is used for exploration and further analysis
of data on time scales from minutes to years after the experiment or observation is performed
(stage 3). The ensemble often consists of multiple applications chained together, where each
application generally supports shared memory parallelism only.

The representative files are as follows

e A: A shared input file used by all tasks in the ensemble. This includes generated files
such as an input mesh and gathered files such as reference lookup tables, e.g. detailed
Equation of State (EOS) data or known genome sequences.

e B: An input file for each task in the ensemble. This includes parameter files and EOD
data sets.

e C: An application checkpoint/restart file. There must be enough temporary storage
to retain 3 x N checkpoint files. Ensembles that run for a long time (more common
in UQ) must restart from the checkpoint files. A subset of checkpoint files are saved
forever.

e D: Temporary files used as input for dependent applications in the ensemble (more
common in HTC) and to enable out-of-core algorithms.

e E and F: Files containing quantities of interest or processed data, e.g. images to make
later analysis easier. The long-term value of the data dictates whether it should be
stored for the lifetime of the campaign or forever.

The APEX machines should provide capabilities which help the UQ framework and
workflow management software perform these tasks. It should be easy and fast to aggregate
data, exchange progress data between the software and the ensemble, and reuse common
data products in different runs of the ensemble, e.g. Equation of State (EOS) tables or
bio-informatics reference databases (key-value stores).

1.4 Mapping the workflows to Cori/Trinity

In this section we describe possible ways to map the two workflows to the Cori/Trinity
system. The Cori/Trinity system provides a storage system which contains SSD and HDD
tiers. The SSDs are used to implement a Burst Buffer (BB) and the HDDs provide the storage
for the Parallel File System (PFS). The product used to implement a BB on commodity SSDs
is named Cray DataWarp. Details about DataWarp can be found in [2]. We briefly describe
the functionality below.

The SSD storage in Cray DataWarp nodes is a scheduler resource which is dynamically
assigned to compute jobs based on the amount requested in the user batch script. The storage
can be assigned for the lifetime of the compute job: a job reservation, or independently of
the compute job: a persistent reservation. The raw storage can be configured in a scratch
mode, where files are explicitly moved between tiers using a command line or C API, or a
cache mode, where file pages move transparently between tiers according to a user-defined
caching policy. Finally, the user may choose a striped or private access mode where files are
either striped across multiple DataWarp nodes or exist in a single DataWarp node. Most
combinations of storage lifetime, configuration and access mode are supported.

1.4.1 Simulation science workflow

In our earlier description of the simulation science workflow we identified 3 general classes of
data: input data sets, checkpoint data sets, and analysis data sets. Further, we identified the
data retention periods of each storage system interaction for the associated data sets. In this
section we examine how to efficiently create and interact with thse data sets on Cori/Trinity;
however, we first must address the reliability of the burst buffer architecture. Fixed cost burst
buffer architectures inherently make a tradeoff between performance and reliability. That is,
for a fixed set of burst buffer storage media the highest performing burst buffer will have the
least reliability, and a reliable burst buffer will perform more slowly than a less reliable burst
buffer [3]. The same statement is true of parallel file systems (PFS); however, the parallel file
system architectures used for Cori/Trinity are expected to experience data loss events very
infrequently. In our description of how the workflows are mapped to the Cori/Trinity storage
tiers, we will describe how our simulation science workflow mapping attempts to maximize
scientific throughput and minimize rework in consideration of the unknown reliability of the
burst buffer architecture.

Burst Buffer Interactions The burst buffer storage tier is intended to improve the per-
formance of all large-scale storage system interactions. In general, all data sets large enough
to require a significant storage interaction (e.g. an interaction longer than 10 - 30 seconds)
should attempt to leverage the burst buffer. Thus Cori/Trinity’s scheduler will include direc-
tives to pre-fetch initial data sets including initial input decks and mesh files, the checkpoint
to use for simulation restart, and analysis data sets to be down-sampled, manipulated, or
visualized.

The central role of the burst buffer is to improve the performance of scientific simulation
checkpoint /restart functionality; and to that end we anticipate all generated checkpoints
will be written into the burst buffer. As we described earlier, the odd/even/end-of-job
checkpoint scheme ensures that the capacity demands of the checkpoint workload will be
kept relatively low compared to the media endurance requirements. Further, the burst
buffer will not migrate every checkpoint onto the PFS. Rather, we expect that one of the
odd/even checkpoint dumps will be written from the burst buffer to the PFS, and that the
end-of-job checkpoints will also be written from the burst buffer into the PF'S.

The most complicated storage system interaction exists for analysis data sets. The burst
buffer is not required to provide long-term reliability; however, analysis data is, by its nature,
slated for long-term storage. Analysis data sets will be written into the burst buffer, and then

immediately written into the parallel file system (asynchronously to allow the application to
continue its progress).

As we will discuss in the PFS tier interactions, a job has not truly finished successfully
until the analysis data and any checkpoints to be retained are durable in the PFS. Never-
theless, the user will immediately schedule another job (usually the last line of a job batch
script will submit the next job into the batch queue) with the hope that the next job will use
the end-of-job checkpoint already extant. This allows the simulation to continue to make
progress even though the “forever” data has not yet been written to its final locations.

Parallel File System Interactions The Cori/Trinity PFS is mounted by all compute
nodes, thus applications will always have the option to bypass the burst buffer and use the file
system directly. In fact we expect small-scale application pilot runs that work with small data
sets are unlikely to use the burst buffer. Thus the PFS has the capability to synchronously
read and write data in support of each of the five identified science phases. And if the burst
buffer is temporarily unavailable due to outage, scientific progress can still continue by using
the PFS, simply with less efficiency as the applications may spend significantly more time
performing I/O than in the case when the burst buffer is functioning. In these cases, the user
will perform the same cleanup manual actions that they do currently. The large majority of
checkpoints will be deleted as soon as the analysis data from later timesteps is written into
the PFS. A small number of checkpoints will be retained within the PFS until the campaign
is completed, at which point those checkpoints will be written to long-term storage.

The more complicated PFS interactions (from a users point of view) occur when the burst
buffer is used in conjunction with the PFS. At job completion, the next job is submitted
to leverage the fact that the most recent checkpoint already exists within the burst buffer.
However, the user cannot immediately perform manual cleanup operations for checkpoints
generated by that job. Rather, until the analysis data sets are successfully migrated from
the burst buffer into the PFS (which may happen considerably later than job completion),
the preceding checkpoints cannot be deleted. On its surface, this is no different than the case
where only the PF'S existed as a storage tier for the simulation; however, the user’s workflow
must be adjusted as job completion is no longer a valid indicator that the analysis data and
valuable checkpoints exist within the PFS. Instead, the user will have to manually verify
that the data sets exist — which may lead to a larger PFS metadata read workload while
users poll the file system to determine that cleanup may occur and rework is not necessary.

Long-term Storage Interactions Long-term storage interactions occur throughout the
campaign period. As users generate initial states, identify valuable checkpoints, and generate
analysis data sets, this data will be copied into an HPSS tape archive for long term storage.
This interaction does not occur at prescribed intervals, rather users will backup data at an
interval that makes sense based on the workflow progress and the size of the data sets. Large
data sets will be backed up to long term storage immediately, whereas a series of small data
sets may be accumulated into a usefully sized package before a backup copy is created. This
off-system data movement is critical to achieving adequate protection for scientific data, but
is not specific to Cori/Trinity.

1.4.2 Data intensive workflow

There are many opportunities in UQ and HTC workflows to reuse data already present in
BB storage. However, as discussed earlier, reliability limits how long data products should
remain in BB storage. For illustrative purposes below, we assume that data can be reliably
stored in the BB.

We would like to use a persistent reservation of BB storage for the shared input files: A.
These files are generally read by every single task in the ensemble and are also repeatedly
read during a campaign. A job reservation of storage is not ideal because the data would
need to be staged from the PFS to the BB many times.

We plan to use a job reservation of BB storage for the data products: B, C and D. The
access mode, private or striped, depends on the file size and access frequency. In NERSC’s
HTC workflows, the size of the EOD data set: B is sometimes very small, e.g. < 100 MiB.
The NERSC HTC workflows generally consist of multiple dependent applications which
communicate through files. These files have no long-term value and are just needed to
enable the workflow. We would use a scratch mode (and not a cache) for the temporary
files because there is no need to move the files to the PFS. Checkpoint /restart libraries, e.g.
HIO, will be used to manage the movement of checkpoint files: C between BB and PFS.

We would also like to use a persistent reservation of BB storage for the aggregated data
products: Es and Fs. These output products will be accessed multiple times by different
users long after the workflow pipeline has completed. It is helpful if the storage is managed as
a cache for HTC experimental workflows because the data from the most recent experiment
will be accessed more often than older data, but the older data will still be accessed. The
accesses from the users include interactive analysis/visualization of raw data and simply
looking at images of already analyzed data. The data to be saved forever will be copied to
HPSS throughout the campaign. This data may be retrieved during the current or a future
campaign.

2 Workflow Table

2.1 Table description

e Workflow: The name of the workflow. The LANL workflows are EAP, LAP, Sil-
verton and VPIC; the NERSC workflows are ALS (which represents reconstruction of
microtomography beamline data generated at ALS), GTS, HipMer, Materials (which
includes Quantum Espresso and BerkeleyGW codes), MILC and Sky Survey; the SNL
workflow is a typical UQ workflow enabled by Dakota.

e Workload percentage: The percentage of total facility compute time consumed by
this workflow.

e Representative workload percentage: The percentage of total facility compute
time consumed by this workflow and other similar workflows. For example, the Gy-
rokinetic Tokamak Simulation (GTS) workflow is assumed to represent the compute
and storage needs of all nuclear fusion particle in cell (PIC) workflows run at NERSC.

e Number of Cielo cores (Nc¢): The number of cores needed to run today’s problem
size on Cielo. A workflow often uses multiple concurrencies, however, we simplify
things by just showing the number of cores used for the bulk of the computation.

e Number of workflow pipelines per campaign (Np): The number of pipelines
run during a single DOE allocation. In our analysis we assume that a single DOE
allocation at NERSC is available for 12 months.

e Anticipated increase in problem size by 2020: The anticipated growth of datasets
by 2020. For example, if a simulation is expected to use 8x more grid points by 2020
then this number will be 8. This number could be very low if the project plan is to
incorporate additional physics or more detailed physics models into a simulation rather
than increase mesh resolution.

e Anticipated increase in number of workflow pipelines per campaign by 2020:
The anticipated growth in throughput by 2020. For example, if the number of simu-
lations in a UQ ensemble is expected to grow by 2x then this number will be 2. This

is an extremely important number to quantify the expected growth of experimental
workflows run at NERSC.

¢ Amount of data retained: The capacity needed to store data used and produced
by a single workflow pipeline. The capacity is given in units of percentage of system
memory on Cielo. Use Equation [1|to convert the capacity from a percentage of system
memory (Cm) to GiB (Cyg) for a single problem size. Cielo has 2 GiB of DRAM

memory per core (M).
Cm

Cg=——XxM x Nc (1)
The duration that data must be stored is categorized into 3 groups: during a single
pipeline, during a campaign, and forever. This is then further subdivided into different
storage use cases: checkpoint/restart, analysis, read-only input, and out-of-core.

— During a pipeline (T'p): The capacity needed to store data which only needs
to exist for the duration of a single workflow pipeline. Examples include tem-
porary checkpoint files for resilience and restarting a simulation, temporary files
for exchanging data between different workflow stages, and applications using
out-of-core algorithms.

— During a campaign (7'c): The capacity needed to store data which must exist
for the duration of a campaign. Examples include additional files for ad-hoc or
unplanned data analysis.

— Forever (Tf): The capacity needed to store data which must be saved forever.
This is the long-term storage requirement of the data used and produced in a
single DOE allocation.

2.2 Table
The table is shown in Figure [3]

10

LANL NERSC SNL
Workflow EAP LAP Silverton VPIC ALS GTS HipMer | Materials MILC Sky Survey| Dakota
Workload percentage 60 5 15 10 <1 1 <1 7 5 <1 10
Representative
workload percentage 60 5 15 10 3 6 7 19 11 3 10
Number of Cielo cores 65536 65536 143104 70000 100, 16384 960 2400 100000 24 65536
Number of workflow
pipelines per campaign | 40to 200| 10to20| 10to 100/ 10 to 50 10760 100 ? 100 1000 21000/ 50 to 200
Anticipated increase in
problem size by 2020 1.00 1.00 1.00 1.00 1.00 5.00 ?| 10to25 1.00 1.00 1.00
Anticipated increase in
workflow pipelines per
campaign by 2020 2.00 2.00 2.00 2.00 5.00 1.00] ? 1.00 ? 2.38 2.00
Data retained
(percentage of memory) 240.00| 2828.50 805.00 186.25| 285.63 15.57, 100.54 135.42 103.38, 11.57 25.07
During pipeline 30.00 75.00 320.00 18.75| 147.68 0.68 34.34 20.83 102.53 2.16 0.15
Analysis 126.57 34.34 20.83 2.16
Checkpoint 30.00, 75.00 320.00 18.75 0.68 0.15
Input 21.10 0.00]
Out-of-core 102.53
During campaign 60.00 80.00 37.50 21.10 0.62 0.00
Analysis 60.00, 21.10 0.62
Checkpoint 80.00 37.50
Input 0.00] 0.00 0.00]
Forever 150.00, 2753.50 405.00 130.00/ 116.84 14.89 66.20 114.58 0.23 9.41 24.93
Analysis 50.00] 2500.00 5.00 130.00, 106.29 14.89 0.36) 114.58 0.12 0.62 24.44
Checkpoint 100.00| 250.00 400.00 0.49
Input 3.50 10.55 65.83 0.00] 0.12 8.79 0.00]
Figure 3: APEX workflow summary table. Note that this data may change as we continue

our discussions with domain scientists

11

2.3 Example uses of table data

Q1. How much storage is needed to run a typical VPIC workflow pipeline?
The total data retained is 186.25% of memory at 70,000 cores. This is equal to 254.64
TiB (see Equation [1]).

Q2. How much storage is used for productive I/O (i.e. not defensive I/O) in a
typical VPIC workflow pipeline?

The total storage used for checkpoint /restart for resilience purposes is 18.75% of memory
at 70,000 cores. This means that 229.00 TiB of storage is used for productive 1/O.

Q3. How much long-term storage is needed to archive all data from the ALS
workflow each campaign? (All NERSC data assumes that a campaign is a 1 year
DOE allocation)

There are 10,760 workflow pipelines executed per year and the data saved forever corre-
sponds to 116.84% of memory at 100 cores. This is equal to 233.68 GiB of data per workflow
pipeline. This adds up to 2.40 PiB of data per campaign and consists of 0.22 PiB of beamline
data and 2.18 PiB of analyzed data.

Q4. How is the Sky Survey workflow expected to change by 20207

The growth in problem size is 1.00x and growth in throughput is 2.38x. The problem
size is expected to remain constant because the resolution of the sky images will not change.
This is because the resolution of Dark Energy Camera, which is used to collect the images,
will not change. The throughput is increasing because the number of images is expected to
grow from 1.26 million to 3 million.

Q5. How does the storage need of the HipMer workflow change depending on
whether multiple workflow pipelines are scheduled simultaneously or consecu-
tively?

We assume that we want to run ten workflow pipelines. If the workflow pipelines are
run simultaneously then the storage requirement is 100.54% of memory at 960 cores all
multiplied by 10 workflow pipelines. This is 18.85 TiB. If, on the other hand, the workflow
pipelines are run consecutively then the storage requirement is 13.05 TiB (12.41 TiB for the
long-term data products and 0.64 TiB as temporary scratch space for 1 pipeline at a time).
The capacity difference could be significant if the user must schedule a fixed capacity of fast
storage.

3 Closing

From the above described workflows the APEX team has mined many of the requirements
used to draft our requirements for procuring compute resources. A careful reader of these
workflows will likely find additional insights and generalizations that offer opportunities to
improve the performance of how APEX campaigns are constructed from the constituent
workflows.

12

4 Glossary of Terms

To better understand this document we provide the following glossary of terms used within
this document.

Allocation A fixed quantity of computational time granted to a single project to use on
the capacity-class computer.

Analysis Dump Data written from a parallel application for the express purpose of scien-
tific analysis or visualization. The data is typically domain dependent and is typically
analyzed in conjunction with other analysis dumps from the same parallel applica-
tion (e.g. each dump may represent the system state at each second of the simulated
system, with a total of 200 seconds simulated during a campaign).

Campaign A well-defined time interval during which a number of proposals will be allo-
cated fixed quantities of computational time (i.e. allocations) on the capability-class
computer.

Checkpoint Dump Data written from a parallel application that allows an interrupted
application to resume from the progress made up to the time of the data creation.
Simulations read the checkpoint dump at the beginning of a job in order to leverage
prior progress toward simulation completion.

Data Retention Time Describes the time interval during which the data must be made
durable. For example, an application that produces checkpoint dumps requires that
those dumps must exist long enough for the application to progress far enough to
create a subsequent checkpoint dump, or the application completes successfully. In the
described workflows we describe three relevant retention times: immediate, meaning
the data is temporary in nature and will be replaced with more up to date data as
soon as possible; campaign, meaning the data is valuable throughout the campaign;
and forever, indicating the data will outlive the life of the machine.

Gamma The optimal checkpointing time interval for a computational job. If JMTTI is 24
hours, Gamma=0.1 corresponds to an optimal compute interval between checkpoints
of 2.4 hours.

Job A computational job runs on the capability-class machine and consumes the allocation
of compute time.

Proposal A research proposal is a document that provides a detailed description of the
manner in which the capability-class machine will be used to achieve scientific goals.

Simulation An execution of a parallel application that simulates physical phenomena. Sim-
ulations may take anywhere from hours to weeks or months to finish. A simulation will
typically generate a series of restart dumps that allow the simulation to be composed
into a series of jobs that execute on the capability machine.

13

Workflow A description of the dependencies and frequencies of a series of inter-related
computational jobs. A proposal typically describes the constituent workflows required
to support the proposed scientific inquiry.

Workload A description of how a capability-class machine executes workflows. The ma-
chine may co-schedule or interleave workflows to the degree possible within the work-
flow constraints.

References

[1] J.T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Generation Computer Systems, 22(3):303 — 312, 2006.

2] Cray. DataWarp User Guide S-2558-5204, September 2015. Available at http://docs.
cray.com/books/S-2558-5204/S-2558-5204 . pdf.

[3] John Bent, Brad Settlemyer, Nathan DeBardeleben, Sorin Faibish, Uday Gupta, Dennis
Ting, and Percy Tzelnic. On the non-suitability of non-volatility. 7th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 15), 2015.

14

http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf
http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf

	1 Introduction
	1.1 Computational Campaign Overview
	1.2 Simulation Science Workflow Overview
	1.3 Data Intensive Workflow Overview
	1.4 Mapping the workflows to Cori/Trinity
	1.4.1 Simulation science workflow
	1.4.2 Data intensive workflow

	2 Workflow Table
	2.1 Table description
	2.2 Table
	2.3 Example uses of table data

	3 Closing
	4 Glossary of Terms

